小程序

下载安防E站

官方微信

头条号

百家号

智慧城市网>监控系统>技术文章

车牌识别系统的问题与新技术应用

2014年06月30日 16:58:36来源:广州思正电子股份有限公司关键词:拾音器,音频监控,车牌识别系统
  车牌识别拾音器系统的识别率和识别准确率越高越好,但同时需认识到识别率达到100%是不可能的,一方面因为车牌污损、模糊、遮挡,或者糟糕的天气(下雪﹑冰雹﹑大雾等等)都会严重影响识别的效果,另一方面一些中英文字符的分割与识别本身难度较大,比如“川”字易错误分割,以及“0-Q”、“2-Z”、“4-A”、“5-S”、“7-T”、“8-B”、“O-D”等易混淆字符。因为识别率的统计是以号牌信息有效的车辆总数为基础的,所以,如果考虑了各种环境、情况下的车牌,车牌识别系统在实际应用中的识别率会大打折扣,在无法识别时仍依赖人工进行判断、识别。
  
  针对传统车牌拾音器识别算法中字符识别率偏低的缺点,目前出现了一种基于卷积神经网络的识别方法,通过对车牌字符图像的样本学习,优化神经网络每层的权值参数,从而在很大程度上提高车牌的字符识别率。仿真结果表明,采用卷积神经网络的识别方法对车牌中的字符进行识别,正确识别率可以到达99%,识别率和抗干扰性明显优于结构特征法、模板匹配法等传统识别方法(后两者分别只有94%、95%)。
  
  利用神经网络的优势,采用一种改进的拾音器基于卷积神经网络的识别机制对车牌照中的字符进行识别。该识别方法通过对理想预处理条件下的车牌字符图片的学习,优化了网络系统中各层的权值参数,大大提高了车牌照中的字符识别率。在实际应用中,对于前期预处理出现的车牌定位不清、字符分割错误等缺点,拾音器如果进一步优化网络结构,则可以识别预处理较差条件下的车牌字符。
  • 凡本网注明“来源:智慧城市网”的所有作品,均为浙江兴旺宝明通网络有限公司-智慧城市网合法拥有版权或有权使用的作品。刊用本网站稿件,需经书面授权。未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智慧城市网”。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其它来源(非智慧城市网)的作品,目的在于传递更多信息,并不代表本网赞同其观点或对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起30日内与本网联系,并提供真实、有效的书面证明。我们将在核实后做出妥善处理。

热门频道